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Abstract We present a method for generating the set of weakly efficient solutions of a
nonconvex multiobjective optimization problem. The convergence of the method is proven
and some numerical examples are encountered.
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1 Introduction

Throughout this paper let us denote by IRn the n-dimensional Euclidean space and by IRn+
its positive orthant. Given a, b ∈ IRn , we write a > b (resp. a ≥ b and a � b) when a − b ∈
intIRn+ (resp. a − b ∈ IRn+ \ {0} and a − b ∈ IRn+), where intIRn+ stands for the interior of
IRn+. Let A be a nonempty subset of IRn . A point a ∈ A is said to be an efficient point (resp.,
weakly efficient point) of A if there exists no b ∈ A such that b ≥ a (resp., b > a). The sets
of all efficient points and weakly efficient points of A are respectively denoted by Max(A)

and WMax(A).
Let f : IRm → IRn be a vector function and X ⊆ IRm a nonempty set. We consider the

following multiobjective optimization problem associated with f and X :

Max f (x)

subject to x ∈ X. (VP)

This problem means finding a point x0 ∈ X such that f (x0) is an efficient point of the set
f (X), or in other words, there is no x ∈ X verifying the inequality f (x) ≥ f (x0). The point x0

is called an efficient solution and the vector f (x0) is called an efficient value of (VP). The set of
all efficient solutions of (VP) is denoted by S( f, X) and its image Max( f (X)) = f [S( f, X)]
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is called the efficient value set of (VP). Sometimes one is interested in finding weakly efficient
solutions x0 ∈ X in the sense that f (x0) is a weakly efficient point of the set f (X). The weakly
efficient solution set of (VP) is denoted by WS( f, X) and its image WMax( f (X)) under f is
called the weakly efficient value set of (VP). It is clear that the inclusion S( f, X)⊆WS( f, X)

holds and in general it is strict.
Over the last three decades various methods for solving problem (VP) have been proposed.

The majority of them are aimed at obtaining one or some solutions of (VP), frequently by
combining mathematical programming algorithms with the interaction of a decision maker
who is responsible for choosing a suitable solution among the efficient solutions. Another
class of methods attempts to approximate the entire efficient solution set S( f, X) or its image
Max( f (X)). The problem of finding the whole solution set of a multiobjective problem is
important in applications, especially in multicriteria design and in multicriteria decision mak-
ing (see [5,8,24,25]). Its solution, however, is a very difficult task. We know that identifying
all optimal solutions of a scalar programming problem is numerically possible only when f
and X have a special structure. In the multiobjective case, even when these data are linear,
the computational demands increase so fast with problem size that most existing algorithms
refuse to provide satisfactory results when the number of criteria is relatively large [2–4].
Because of the complexity of this problem, by our knowledge, relatively few works exist
which fully describe numerical algorithms for finding the entire set S( f, X) or WS( f, X)

apart from the classical simplex method (see [26]). For linear problems of medium size
some recent methods such as Armand’s lexicographic selection based simplex method [1],
Benson’s outcome space method [3], Kim and Luc’s normal cone method [9] are quite effec-
tive in constructing all maximal faces of the set S( f, X) or WS( f, X). For nonlinear problems
a number of methods have lately come to light. Detailed discussions on several existing meth-
ods can be found in the monograph by Miettinen [18] and in the survey paper by Ruzika and
Wiecek [22] (see also [12–15,20,23]). Most of these methods use inner or outer approxima-
tions in order to produce as large as possible a subset of the efficient (or weakly efficient)
value set. We mention here some of them which are related to the idea of the method we are
going to develop. In the case of convex problems, the papers [16] and [17] offer algorithms
by normal projection and duality for generating a solution set whose image converges to the
set WMax( f (X)). For nonconvex problems, the paper [6] provides a numerical algorithm
to produce an evenly distributed set of points in the set Max( f (X)). This method is easy for
coding, but it is not always sure that the solution set obtained by the algorithm converges to
the solution set of the multiobjective problem when the number of iterations grows to ∞.
The paper [10] presents both inner and outer approximations to the weakly efficient value set
(which becomes the efficient value set under a strict convexity hypothesis) of the problem,
but the convergence of the method is not fully described. The paper [19] also gives a method
to scalarize nonconvex multiobjective problems, but no solving algorithms are proposed.

The goal of this paper is to develop a method to generate the set WS( f, X) when the
problem is not convex, that is either X is not convex or f is not concave, or both. Our method
belongs to the class of outer approximations and is close to that of [10]. The distinction is
the use of particular scalarizing functions in the approximating process which allows us to
rigorously establish the convergence of the method. The choice of studying the weakly effi-
cient set instead of the efficient set is due to technical difficulties in proving the convergence.
In practical situations one is rather interested in efficient solutions than in weakly efficient
solutions. The concern is, however, that the set of efficient solutions is unstable while the
set of weakly efficient solutions is stable. For instance, given a convex and compact set,
the limit of a convergent sequence of efficient points of the set may be not efficient, but is
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always weakly efficient. So, generally without specific hypothesis on the data, convergence
of approximations to the efficient solution set of the problem is not valid.

The paper is structured as follows. In Sect. 2 we construct a sequence of so-called free
disposal nonconvex polyhedra which converges to the free disposal hull of a given set in the
positive orthant R

n+. In Sect. 3, we define a monotonic function associated to a nonempty
subset of R

n+ and prove several properties of it. Particular attention is paid on the sequence
of monotonic functions associated to the sequence of free disposal nonconvex polyhedra of
Sect. 2. This sequence is crucial in solving Problem (VP). In Sect. 4 we propose a method to
solve (VP). To do it, first we construct a sequence of nonconvex polyhedra Ak by the method
of Sect. 2 which converges to the set f (X), and its associated monotonic functions gk by the
method of Sect. 3. Then we solve the scalarized problems

max gk ◦ f (x)

subject to x ∈ X, (P(gk))

whose optimal solutions are a part of the weakly solution set of (VP) and converges to it as
k tends to ∞. The last section is devoted to some small size numerical examples to illustrate
our method and show its applicability.

2 Approximation by free disposal nonconvex polyhedra

Let us denote by C the collection of compact sets A in R
n+ such that A = cl(A ∩ intRn+). Let

P ∈ C. Following Debreu’s terminology [7] we define the free disposal hull of P as the set
P♦ := (P − R

n+) ∩ R
n+, and say that P is free disposal if it coincides with its free disposal

hull. Here are some properties of the free disposal hull which are quite obvious, but useful
for future analysis.

Proposition 2.1 Let P and Q be elements of C. Then

(i) P ⊆ P♦ = (P♦)♦ and P♦ ∈ C;
(ii) P ⊆ Q♦ implies P♦ ⊆ Q♦;

(iii) (P ∪ Q)♦ = P♦ ∪ Q♦ and (P ∩ Q)♦ ⊆ P♦ ∩ Q♦;
(iv) Max(P) =Max(P♦) and WMax(P) ⊆ WMax(P♦);
(v) P♦ = [Max(P)]♦ = [WMax(P)]♦.

Notice that the inclusions in (iii) and (iv) may be strict, and the set Max(P) is nonempty
because P is compact.

A free disposal set P ⊆ R
n+ is said to be finitely generated (or a free disposal polyhedron)

if there is a finite number of vectors a1, . . . , ak ∈ intRn+ such that P is exactly the free
disposal hull of the set {a1, . . . , ak}.

In this section we shall construct a sequence of free disposal polyhedra that approximate
the free disposal hull of a given set in R

n+.
Let a, b ∈ intRn+ be given. Denote

V (b|a) =
{ {b(i) : i = 1, . . . , n} if a < b

{b} else,

where b(i) is the vector whose coordinates are those of b except for the i th one which is
equal to the i th coordinate of a.

Given α ∈ R
n+ \ {0}, we define

hα(y): = max{t ∈ R : y � tα}.
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This function has been studied by several authors ([11,21]). Its application in multiobjective
optimization was first given by Pascoletti and Serafini [19]. Let record some of its properties.
It is clear that hα is defined and continuous on R

n when α belongs to the interior of R
n+, and

on R
n+ for other α. Moreover, it is continuous in both variables α and y on (intRn+) × R

n and
weakly monotonic in y on its domain of definition. Recall that a function g: A ⊆ R

n → R is
said to be monotonic (respectively, weakly monotonic) on A if a ≥ b implies g(a) > g(b)

(respectively, a > b implies g(a) > g(b)) for every a, b ∈ A. For y ∈ R
n+, we have

hα(y) = min

{
yi

αi
: i ∈ {1, . . . , n}, αi 	= 0

}
.

Let A ∈ C. The optimal value of the problem

max
a∈A

hα(a), (Pα)

where α ∈ R
n+ \ {0} will be denoted by tα . It is obvious that tα exists because A is a compact

subset of R
n+ and hα(·) is continuous on R

n+, and that tα > 0 as A meets the interior of R
n+.

Lemma 2.2 Let P ⊆ R
n+ be a free disposal set generated by W = {a1, . . . , ak} ⊆ intRn+

and let A ⊆ P. Then the following assertions hold:

(i) P is generated by its efficient elements, that is P = [Max(W )]♦ = [Max(P)]♦;
(ii) For each α ∈ Max(W ), one has 0 < tα ≤ 1, and tα = 1 if and only if α ∈ A;

(iii) For v ∈ intRn+, the set Q = P ∩ {
y ∈ R

n+ : hv(y) ≤ 1
}

is a free disposal set generated
by ∪k

i=1V (ai |v) .

Proof The first assertion is clear due to Proposition 2.1. For the second assertion, observe
that for α ∈Max(W ), max{hα(y) : y ∈ P} = 1. As A ⊆ P we deduce 0 < tα ≤ 1. Moreover,
if tα = 1, then A ∩ (α + R

n+) 	= ∅, which is possible only when α ∈ A because α is then an
efficient point of A as well. Conversely, if α ∈ A, one has tα ≥ 1 which becomes equality
because tα ≤ 1.

For the last assertion, Proposition 2.1(iii) implies that Q is a free disposal set. Let α ∈
V (ai |v) for some i ∈ {1, . . . , k}. Then either α = ai if v < ai is not satisfied, or α = ai ( j)
for some j ∈ {1, . . . , n} when v < ai . In the first case, hv(α) ≤ 1 which implies α ∈ Q. In
the second case,

hv(α) = min

{
ai

1( j)

v1
, . . . ,

ai
n( j)

vn

}
≤ ai

j ( j)

v j
= 1,

where ai
1( j), . . . , ai

n( j) are the coordinates of ai ( j). This and the fact that α ∈ P show that
α ∈ Q. Conversely, let y ∈ Q. There is i ∈ {1, . . . , k} such that y ∈ {ai }♦ and hv(y) ≤ 1.
If v does not satisfy v < ai , then y ∈ (V (ai |v))♦ = {ai }♦ by definition. If v < ai , then
v j < ai

j for j = 1, . . . , n. On the other hand, let i0 ∈ {1, . . . , n} be such that

yi0

vi0

= min

{
yi

vi
: i = 1, . . . , n

}
≤ 1.

Then yi0 ≤ vi0 and we derive y ≤ ai (i0), that is y ∈ ai (i0)
♦. This completes the proof. �

We now construct by induction a sequence of finitely generated free disposal sets Ak which
are outer approximations of the free disposal hull of a given set A ∈ C. For the initialization
step (k = 1), we solve the following scalar problem

max
a = (a1,...,an) ∈ A

ai , (P0)
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for i = 1, . . . , n. Let α0
i be the optimal values which exist because A is compact, and let

α0 = (α0
1, . . . , α0

n). This point is the supremum of A and is also known in some literature as
ideal point. Note that α0 ∈ intRn+. Define

A1 : = [0, α0
1] × · · · × [0, α0

n]
W1 : = {α0}.

It is clear that A1 is a free disposal set generated by W1=Max(A1) (Lemma 2.2(i)). For
α ∈ W1, solve the problem (Pα) and find the optimal value tα . Define

V1: = W1 \ A♦ = W1 \ {α ∈ W1 : tα = 1} ,

in which the second equality follows from Lemma 2.2. Assume that Ak , Wk and Vk have
already been constructed. If Vk = ∅, set Ak+1 = Ak . If Vk 	= ∅, set

Ak+1 = Ak ∩ {
y ∈ R

n+ : hα(y) ≤ tα, α ∈ Vk
}
.

Notice that α ∈ intRn+ by induction and tα > 0 because A∩intRn+ 	= ∅. Then the sets Wk+1

and Vk+1 are given by

Wk+1 = Max(Ak+1) and Vk+1 = Wk+1 \ A♦.

According to Lemma 2.2 it is clear from the construction that Ak is a free disposal set
generated by Wk . To give some more properties on the sets Ak let us recall the concept of
convergence with respect to the Hausdorff distance of closed sets. Let A1 and A2 be two
closed sets in R

n . The Hausdorff distance between them is defined by

d(A1, A2) = inf{t > 0 : A1 ⊆ A2 + t Bn, A2 ⊆ A1 + t Bn},
where Bn is the closed unit ball of R

n . Let {Dk}∞k=1 ⊆ R
n be a sequence of nonempty

closed sets. We say that it H-converges to a closed set D and write limk→∞ Dk = D if
limk→∞ d(Dk, D) = 0.

Theorem 2.3 The following assertions hold:

(i) A♦ ⊆ Ak+1 ⊆ Ak ;
(ii) Ak+1 = Ak ∩ {

y ∈ R
n+ : hα(y) ≤ tα, α ∈ Wk

}
;

(iii) Vk = Wk \ {α ∈ Wk : tα = 1};
(iv) If for some k it is Vk = ∅, then A♦ = Ak ;
(v) (limk→∞ Ak) ∩ intRn+ = A♦ ∩ intRn+.

Proof For the first assertion, by construction, A♦ ⊆ A1. For k ≥ 1 the inclusion Ak+1 ⊆ Ak

is clear. Assuming by induction A♦ ⊆ Ak , we prove that A♦ ⊆ Ak+1. Indeed, if Vk = ∅, we
are done. If Vk 	= ∅ and a ∈ A♦, then hα(a) ≤ tα for each α ∈ Vk . Hence a ∈ Ak+1, which
shows that A♦ ⊆ Ak+1. For the second assertion, when α ∈ Wk \ Vk , by Lemma 2.2, one
has tα = 1. Consequently, the inequality hα(y) ≤ tα is true for all y ∈ Ak which yields (ii).
The third assertion is obtained immediately from Lemma 2.2.
Assume now Vk = ∅ for some k ≥ 1. Then Wk ⊆ A♦. By (i),

A♦ ⊆ Ak = W ♦
k ⊆ A♦,

and equality follows.
For the last assertion, let A0 := ∩k≥1 Ak . Then, in view of (i), limk→∞ Ak = A0. We show

that A0∩ intRn+ = A♦∩ intRn+. Indeed, since A♦ ⊆ Ak , we have A♦ ⊆ A0, which implies
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A♦∩ intRn+ ⊆ A0∩ intRn+. For the converse inclusion, suppose to the contrary that there
exists some x ∈ A0∩ intRn+ which does not belong to A♦. Since x ∈ Ak and Max(Ak) = Wk ,
there is some αk ∈ Wk such that x � αk . It is clear that αk ∈ Vk because x /∈ A♦. The
sequence {αk}∞k=1 being bounded, we may extract a subsequence

{
αk(i)

}∞
i=1 that converges

to some α ∈ A0. Then x � α and α ∈ x + R
n+ ⊆ intRn+ + R

n+ ⊆ intRn+. Moreover, x /∈ A♦

implies α /∈ A♦ and hence α ∈ (A0∩ intRn+) \ A♦. We have then

A♦ ∩ (α + R
n+) = ∅.

As A♦ is compact, there is δ > 0 such that

A♦ ∩ ((1 − δ)α + R
n+) = ∅.

Let i0 ≥ 1 be such that(
1 − δ

4

)
α + R

n+ ⊆
(

1 − δ

2

)
αk(i) + R

n+ ⊆ (1 − δ)α + R
n+ for i ≥ i0.

Such i0 exists because αk(i) → α ∈ int
[(

1 − δ
2

)
α + R

n+
]
. Hence

A♦ ∩
[(

1 − δ

2

)
αk(i) + R

n+
]

= ∅ for i ≥ i0.

It follows from the definition of Ak(i)+1 that

Ak(i)+1 ∩
[(

1 − δ

2

)
αk(i) + R

n+
]

= ∅, i ≥ i0.

Since the sequence {Ak}∞k=1 is decreasing (by inclusion), Ak(i+1) ⊆ Ak(i)+1 and we also
have

Ak(i+1) ∩
[(

1 − δ

2

)
αk(i) + R

n+
]

= ∅, i ≥ i0.

This is a contradiction as αk(i+1) is a vertex of Ak(i+1) and αk(i+1) ∈ (
1 − δ

4

)
α + R

n+ ⊆(
1 − δ

2

)
αk(i) + R

n+ for i sufficiently large. The proof is complete. �
We now apply the third assertion of Lemma 2.2 to present a practical way to compute the

generating set Wk+1 of Ak+1

Procedure (W):
Let Vk = {α1, . . . , α p} and set Wk(0) = Wk . Then a generating set of the set

Ak(1) := Ak ∩ {
y ∈ R

n+ : hα1(y) ≤ tα1
}

is given by

Wk(1) = {
V (β|tα1α1) : β ∈ Wk(0)

}
.

Continuing this process for α2, . . . , α p , we obtain that a generating set of the set Ak+1 =
Ak(p) is given by

Wk(p) = {V (β|tα p α p) : β ∈ Wk(p − 1)}.
Then Ak+1 is generated by Wk(p) and Wk+1 = Max(Wk(p)).

To understand the construction of the sets Ak we described above, let us consider the
following example. The set A is given as in Fig. 1a. The first free disposal polyhedron A1
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Fig. 1 (a) Construction of A1,
(b) construction of A2, (c)
construction of A3
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approximating A is the box [M O Nα], where α is found by solving (P0). For the second
step we solve (Pα), which gives us tα , and obtain the free disposal nonconvex polyhedron
A2 generated by W2 = {β1, β2}. Fig. 1b shows this construction. The next polyhedron
A3 is generated by W3 = {γ1, γ2, γ4} (see Fig. 1c). Observe that the set {γ1, γ2, γ3, γ4}
generates A3 too, but γ3 is not efficient, so it can be dropped from the consideration. It is
also worthwhile noticing that limk→∞ Ak 	= A♦ in general.
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3 Scalarizing functions

We shall denote by � the standard simplex of R
n . It consists of all vectors λ = (λ1, . . . , λn) ∈

R
n+ with

∑n
i=1 λi = 1. The relative interior of � is denoted by ri(�).

For A ∈ C we define the function HA on R
n+ by

HA(y): = sup
λ∈�

hλ(y)

maxa∈A hλ(a)
.

Observe that for every λ ∈ �, the value maxa∈A hλ(a) is strictly positive and actually one
can find δ > 0 such that maxa∈A hλ(a) ≥ δ for all λ ∈ �, therefore the function HA is well
defined.

Lemma 3.1 Let A ∈ C. Then the function λ �→ maxa∈A hλ(a) is continuous on �.

Proof First we consider the case λ ∈ ri(�). It is clear that the function hλ(a) is contin-
uous in both variables λ and a on (intRn+) × R

n . Moreover, as A is compact, the max-
function maxa∈A hλ(a) is continuous in λ ∈ ri(�). It remains to consider the case λ =
(λ1, . . . , λq , 0, . . . , 0), with λi > 0, i = 1, . . . , q for some q:1 ≤ q < n. Let λk ∈ �

converge to λ. We wish to prove that

lim sup
k→∞

max
a∈A

hλk (a) ≤ max
a∈A

hλ(a) ≤ lim inf
k→∞ max

a∈A
hλk (a). (1)

Note that there is some k0 ≥ 0 such that λk
i > 0 for i = 1, . . . , q and k ≥ k0. We have then

hλ(a) = min
i=1,...,q

ai

λi

hλk (a) = min
i=1,...,n

{
ai

λk
i

: λk
i 	= 0

}
≤ min

i=1,...,q

ai

λk
i

, for k ≥ k0.

Since A is compact, there is δ > 0 such that |ai | ≤ δ for every a = (a1, . . . , an) ∈ A. For
every ε > 0 and i = 1, . . . , q , when k is sufficiently large, we have

ai

λk
i

− ai

λi
≤ εai ≤ εδ.

It follows that

lim sup
k→∞

max
a∈A

hλk (a) ≤ lim sup
k→∞

max
a∈A

min
i=1,...,q

(
ai

λi
+ ai

λk
i

− ai

λi

)

≤ max
a∈A

hλ(a) + εδ.

Since ε > 0 is arbitrary small, we derive the first inequality of (1). For the second inequality
of (1), observe that the function hλ(·) being continuous on R

n+, there exists some a0 ∈ A
such that

hλ(a
0) = min

i=1,...,q

(
a0

i

λi

)
= max

a∈A
hλ(a). (2)
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For ε > 0 sufficiently small, we can find a′ ∈ A∩ intRn+ such that
∣∣a′

i − a0
i

∣∣ ≤ ε for every
i = 1, . . . , n. Then

hλk (a′) = min

{
a′

i

λk
i

: i ∈ {1, . . . , n}, λk
i 	= 0

}
.

For i = q + 1, . . . , n, we have λk
i → 0, while a′

i > 0. This implies that

hλk (a′) = min
i=1,...,q

a′
i

λk
i

for k sufficiently large. Consequently,

lim inf
k→∞ max

a∈A
hλk (a) ≥ lim inf

k→∞ hλk (a′)

≥ lim inf
k→∞ min

i=1,...,q

a′
i

λk
i

≥ hλ(a
0) − ε max

i=1,...,q

1

λi
.

Since ε > 0 is arbitrary small, we conclude

lim inf
k→∞ max

a∈A
hλk (a) ≥ hλ(a

0),

which together with (2) yields the second inequality of (1). The continuity of the function
λ �→ maxa∈A hλ(a) is proven. �

Notice that the conclusion of the above lemma is not true for any compact A ⊆ R
n+.

Indeed, let A be a subset of R
2 which consists of the simplex � and the point (2, 0). For

λk = (1 − 1/k, 1/k) converging to λ = (1, 0) we have

1 = max
a∈A

hλk (a) < max
a∈A

hλ(a) = 2

and so the function λ �→ maxa∈A hλ(a) is not continuous on �.
Here is a simpler expression for the function HA.

Lemma 3.2 Let A ∈ C, y ∈ R
n+ \ {0} and λy : = y∑n

i=1 yi
. Then

HA(y) = hλy (y)

maxa∈A hλy (a)
.

Proof Let us denote the function in the right hand side of the above equality by φ(y), which
is also positively homogeneous. It follows from the definition of HA that φ(y) ≤ HA(y). For
the converse inequality, observe that φ(y) = α implies that there is a ∈ A such that αa � y.
Then, it is obvious that HA(y) ≤ α. �

Most useful properties of the function HA are given in the next theorem.

Theorem 3.3 Let A, A1, A2 ∈ C. The following assertions hold:

(i) HA is positively homogeneous, continuous and weakly monotonic on R
n+;

(ii) HA = HA♦ ;
(iii) HA1(y) ≤ HA2(y) for every y ∈ R

n+ if and only if A♦
2 ⊆ A♦

1 ;
(iv) For every λ = (λ1, . . . , λn) ∈ �, when ε > 0 is sufficiently small one has

1

1+ ε

min{λi : λi 	= 0} max{hλ(a) : a ∈ A}
HA(λ) ≤ H(A+εBn)∩R

n+(λ) ≤ HA(λ);
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(v) Let {Ak}∞k=1 ⊆ C be a sequence of closed sets, H-converging to a closed set A ∈ C.
Then for every y ∈ R

n+ one has limk→∞ HAk (y) = HA(y).

Proof For the first assertion we observe that hλ is positively homogeneous, then so too is
HA. The continuity of HA comes directly from Lemmas 3.1 and 3.2. The weak monotonicity
of HA is obtained from the same property of hλ.
For the second assertion, we have evidently

max
a∈A

hλ(y) ≤ max
a∈A♦

hλ(y),

because A ⊆ A♦. Moreover, for every a ∈ A♦, there is a′ ∈ A such that a′ � a. Conse-
quently, hλ(a′) ≥ hλ(a) and maxa∈A hλ(a) = maxa∈A♦ hλ(a). By this equality (ii) follows.
As to the third assertion, let A1, A2 ∈ C with A♦

2 ⊆ A♦
1 . In view of (ii) and Lemma 3.2 one

has

HA1(y) = H
A♦

1
(y) ≤ H

A♦
2
(y) = HA2(y).

Conversely, assume that HA1(y) ≤ HA2(y) for every y ∈ IRn+. In particular for a ∈ A2, one
has

HA1(a) ≤ HA2(a) ≤ 1. (3)

If a 	∈ A♦
1 , then a 	= 0 and (a + IRn+) ∩ A♦

1 = ∅. Then, one has

hλa (z) < hλa (a) for every z ∈ A♦
1 .

Consequently,

HA1(a) > 1.

This contradicts (3), by which A2 ⊆ A♦
1 and A♦

2 ⊆ A♦
1 as well.

To prove the fourth assertion, let a ∈ A, b ∈ Bn and ε > 0 such that a + εb ∈ IRn+. Then
one has

hλ(a + εb) = min

{
ai + εbi

λi
: λi 	= 0

}

≤ min

{
ai

λi
:λi 	= 0

}
+ ε

min{λi : λi 	= 0}
≤ hλ(a) + ε

min{λi : λi 	= 0} .

This yields, in view of Lemma 3.2, that

H(A+εBn)∩IRn+(λ) = 1

maxz∈(A+εBn)∩IRn+ hλ(z)

≥ 1

maxa∈A hλ(a) + ε
min{λi : λi 	=0}

≥ 1

1 + ε
min{λi : λi 	=0} max{hλ(a): a∈A}

1

maxa∈A hλ(a)

≥ 1

1 + ε
min{λi : λi 	=0} max{hλ(a): a∈A}

HA(λ).
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The second inequality of (iv) follows from (iii) and the inclusion A ⊆ (A + εBn)∩ IRn+. The
last assertion is obtained from (iv). �

As we shall see later, the weak monotonicity of the function HA allows us to obtain weakly
efficient solutions of (V P) by minimizing the scalar composite function HA ◦ f on X . For
this reason one call it a scalarizing function associated to the set A. In the remaining part
of this section, let A ∈ C and let Ak be the sequence of free disposal approximations of A
described in Sect. 2. The scalarizing functions associated to Ak will recursively be computed.
To this end, set

g1(y) := max{hei (y)/α0
i : i = 1, . . . , n}.

gk(y) := max{gk−1(y), htαα(y): α ∈ Vk−1}.
for k ≥ 2, and y ∈ R

n+.

Theorem 3.4 The following assertions hold:

(i) gk is continuous, positively homogeneous and weakly monotonic on R
n+;

(ii) gk(y) = HAk (y) for k ≥ 1 and y ∈ R
n+;

(iii) For every y ∈ R
n+, the limit limk→∞ gk(y) exists and for y ∈ intRn+, limk→∞ gk(y) ≤ 1

if and only if y ∈ A♦.

Proof The first assertion follows from the properties of the functions hλ(·). For the sec-
ond assertion, since gk and HAk are positively homogeneous, it suffices to show that for
y ∈ R

n+,

gk(y) ≤ 1 if and only if HAk (y) ≤ 1. (4)

We prove it by induction on k. For k = 1, we see that g1(y) ≤ 1 if and only if

yi ≤ α0
i , i = 1, . . . , n. (5)

While the inequality HA1(y) ≤ 1 is equivalent to the relation

hλ(y) ≤ max
a∈A1

hλ(a) for all λ ∈ �.

By choosing λ = ei in the latter relation we obtain (5) because maxa∈A1 hei (a) = α0
i . The

converse is evident because if (5) is true, then HA1(y) ≤ 1.
Assuming gk−1(y) = HAk−1(y) we now show that gk(y) = HAk (y) for every y ∈ R

n+.
We first claim that

HAk (y) ≤ 1 if and only if y ∈ A♦
k . (6)

Indeed, observe that for z ∈ R
n+ \ {0}, one has

(z + R
n+) ∩ A♦

k = ∅ if and only if hλz (z) > max
a∈A♦

k

hλz (a) = max
a∈Ak

hλz (a),

where λz = z/
∑n

i=1 zi . Hence (6) follows. To prove (4) we know by definition that gk(y) ≤ 1
if and only if gk−1(y) ≤ 1 and htαα(y) ≤ 1 for all α ∈ Vk−1. The first inequality, by induc-
tion, is equivalent to HAk−1(y) ≤ 1 which in its turn, by (6) is equivalent to y ∈ A♦

k−1.
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Fig. 2 (a) Level sets of g1, (b)
level sets of g2, (c) level sets of
g3
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The second relation can be rewritten as

hα(y) ≤ tα for all α ∈ Vk−1.

By definition, these inequalities imply that y ∈ A♦
k , and hence (4) holds.

The last assertion is obtained directly from Theorems 2.3(i), (v) and 3.3(iii) by observing
that gk(y) is increasing and bounded. �

With the data of the example given in Sect. 2, the level sets of the functions g1, g2 and g3

are respectively illustrated in Fig. 2a–c.
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4 Solving problem (VP)

In this section we wish to exploit the scalarizing functions gk that we have constructed in
Sect. 3 to solve problem (VP). Assume that f (X) is a nonempty and compact set in the inte-
rior of R

n+ and throughout this section, we set A = f (X). Consider the following scalarized
problem, denoted by (Pk)

max gk ◦ f (x)

subject to x ∈ X.

The existence of optimal solutions of this problem as well as (VP) is guaranteed for instance
when f (X) is a compact set. We shall not return to this question, but concentrate our efforts to
the links between optimal solutions of the scalarized problems and weakly efficient solutions
of (VP) and their convergence. Recall that given a sequence of closed sets {Dk}∞k=1, its upper
limit in the sense of Kuratowski-Painleve is the set lim supk→∞ Dk of all possible limits of
subsequences of ak ∈ Dk, k ≥ 1.

Here is the main result on the method we propose which leads to an algorithm to solve
the problem (VP).

Theorem 4.1 Assume that X is a nonempty and compact set, and that f is a continuous
function with f (X) ⊆ intRn+. Then the following assertions hold:

(i) S(gk ◦ f, X) = {x ∈ X : gk( f (x)) = 1} ⊆ W S( f, X);
(ii) lim supk→∞ S(gk ◦ f, X) ⊆ W S( f, X);

(iii) W Max( f (X)) ⊆ f
[
lim supk→∞ S(gk ◦ f, X)

] − R
n+.

Proof For the first assertion we derive from Theorem 3.4 that

gk( f (x)) = HAk ( f (x)) for every x ∈ X.

Since f (X) ⊆ Ak , we have

hλ( f (x)) ≤ max
a∈Ak

hλ(a) for each x ∈ X,

which shows that gk( f (x)) ≤ 1. By choosing x0 ∈ X that solves the problem

max
x∈X

g1 ◦ f (x),

we see that

1 ≥ gk( f (x0)) ≥ g1( f (x0)) = 1.

Hence the optimal value of problem (Pk) is equal to 1. Furthermore, let x ∈ X with
gk( f (x)) = 1. There is some λ ∈ � such that

hλ( f (x)) = max
a∈Ak

hλ(a).

Hence

hλ( f (x)) = max
a∈ f (X)

hλ(a).

By the weak monotonicity of the function hλ we conclude that x is a weakly efficient solution
of (VP).

The second assertion is obtained from (i) and from the fact that W S( f, X) is a closed set.
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For the last assertion, let y = f (x) be a weakly efficient point of f (X). Since f (X) ⊆ Ak

and Ak is generated by the elements of Wk , there exists αk ∈ Wk such that y � αk for every
k ≥ 1. Let xk ∈ X be a solution of (Pαk ). Then f (xk) � tαk αk and xk ∈ S(gk+1◦ f, X). Here
we have used the fact that gk+1(y) = max{gk(y), htαα(y): α ∈ Wk} (see Theorem 3.4(ii)).
By taking a subsequence if necessary, we may assume that αk → α, xk → x0. Moreover,
y ∈ intRn+ implies that α ∈ intRn+. By this and Theorem 2.3 we assume that α ∈ A♦. Since
1 ≥ tαk = maxa∈ f (X) hαk (a) ≥ hαk (α), then tαk → 1. Hence,

y � lim
k→∞ αk = α = lim

k→∞ tαk α
k � lim

k→∞ f (xk) = f (x0),

which completes the proof. �
We now are able to describe a general scheme of the algorithm for finding the weakly

efficient solution set of problem (VP) which is based on the analysis above.

Step 1. (initialization) For i = 1, . . . , n solve

αi = max
x∈X

fi (x).

Find

S = ∪n
i=1{x ∈ X : fi (x) = αi }

E = { f (x): x ∈ S}
Put k = 1, W0 = ∅ and W1 = {(α1, . . . , αn)}.

Step 2. For α ∈ Wk \ ∪k−1
i=0 Wi , solve

tα = max
x∈X

hα( f (x)).

Compute

Vk = Wk \ {α ∈ ∪k
i=1Wi: tα = 1}.

Step 3. If Vk = ∅, stop. Otherwise

(3a) Find for α ∈ Wk \ ∪k−1
i=0 Wi ,

S(α) = {x ∈ X : htαα( f (x)) = 1}
E(α) = { f (x): x ∈ S(α)}.

(3b) Set

S = S ∪
{

S(α): α ∈ Wk \ ∪k−1
i=0 Wi

}

E = E ∪
{

E(α): α ∈ Wk \ ∪k−1
i=0 Wi

}
.

(3c) Determine Wk+1 as described in Sect. 2, Procedure(W).
(3d) Put k = k + 1 and return to Step 2.

Let us point out two major properties of the algorithm.

(1) Obtention of weakly efficient solutions and weakly efficient values. At the kth iteration,
the set S of Step 3 is exactly the solution set S(gk+1 ◦ f, X) and the set E is its set of
values in the outcome space R

n . Consequently,

S ⊆ W S( f, X) and E ⊆ W Max( f, X).
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Indeed, by the definition of αi , we have

g1( f (x)) = max

{
fi (x)

αi
: i = 1, . . . , n

}

and g1( f (x)) = 1 if and only if f (x) ∈ E . For k ≥ 1, one has that gk+1( f (x)) = 1 which
means that x ∈ S(gk+1◦ f, X), in view of Theorem 4.1, if and only if either gk( f (x)) = 1,
or htαα( f (x)) = 1 for some α ∈ Vk . Therefore, by induction, gk+1( f (x)) = 1 if and
only if x ∈ S (of Step 3).

(2) Convergence. Denote the upper limit of the set E in Step 3 when k tends to ∞ by E∞.
Then

E∞ ⊆ W Max( f, X) ⊆ E∞ − R
n+.

This is the third assertion of Theorem 4.1. In particular, for every weakly efficient solu-
tion x of problem (VP) one can generate a sequence of weakly efficient solutions {xk}
by the algorithm the limit of which dominates x , i.e. f (limk→∞ xk) � f (x).

The following comments are useful in numerical implementation of the algorithm.

(a) Collecting the optimal solutions and optimal values. In general the maximization prob-
lems occurring in the algorithm are neither linear, nor convex, therefore most existing
solvers offer, for each α ∈ Vk , one solution xα and its value f (xα) only. Consequently,
the following modifications are to be taken into account when coding the program.

– In Step 1 the set S consists of n solutions x1, . . . , xn with f (xi ) = αi which are
obtained by solving the problem of maximizing fi over X .

– In Step 3 the set S(α) consists of one solution xα with htαα( f (xα)) = 1 and the set
E(α) = { f (xα)}.

We notice also that in practice it is quite often that the solution set S(α) in Step 3 is a
singleton, or is not a singleton, but the value set E(α) is (most of examples given in the
existing literature on the topic have this property). Here are some particular cases we
cite without going into details.

(i) Strictly quasiconcave problems. The problem (VP) is strictly quasiconcave if
X is a convex set and f is strictly quasiconcave, that is, fi (t x + (1 − t)y) >

min{ fi (x), fi (y)} when x, y ∈ X, x 	= y and 0 < t < 1, i = 1, . . . , n. When
(V P) is strictly quasiconcave, the set S(α) is a singleton, and hence so is the set
E(α).

(ii) Strictly quasiconcave-like problems. The problem (VP) is strictly quasiconcave-
like if x, y ∈ X with f (x) 	= f (y) there exists some z ∈ X such that fi (z) >

min{ fi (x), fi (y)}, i = 1, . . . , n. When (V P) is strictly quasiconcave-like, the set
S(α) is not necessarily a singleton, but the set E(α) is. The convergence property
(2) remains true, which means that all weakly efficient values can numerically be
obtained. However, not all weakly solutions can be generated because at Step 3,
for each α, only one solution xα is stocked in the set S(α). Notice also that strictly
quasiconcave problems are strictly quasiconcave-like, but the converse is not true,
and for these problems, the weakly efficient solutions are efficient.

Note that the solution set S obtained in Step 3 forms a portion of weakly efficient solu-
tions which is the best in the following sense. For α ∈ Wk , define a new norm on R

n

by

‖y‖ = max

{ |yi |
αi

: i = 1, . . . , n

}
.
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Then the value f (xα) is a nearest point of the set f (X) to the reference point α with
respect to this norm. In the terminology of multicriteria decision making [25], the col-
lection of these solutions xα represents the best compromise solution set of the weakly
efficient solutions of the problem (VP) with respect to the targets formed by the gener-
ating set Wk of the free disposal outer approximation Ak of f (X).

(b) Stopping criterion. Without a particular structure of the data f and X , the stopping cri-
terion of Step 3 hardly holds. In such situations one may choose a priori a small positive
number ε and set Vk(ε) = Wk \{

α ∈ ∪k
i=1Wk :tα ≥ 1 − ε

}
. Then one stops the algorithm

as soon as Vk(ε) is empty. We claim that for ε > 0, the algorithm terminates after a finite
number of iterations. Indeed, notice first that since f (X) ⊆ intRn+ one finds a positive
number δ such that f (X) ⊆ (δ, . . . , δ) + R

n+. Now suppose to the contrary that there
exists αk ∈ Wk such that tαk < 1 − ε for every k ≥ 1. Without loss of generality one
may assume that αk and tαk converge respectively to α ∈ [ f (X)]♦ and t ≤ 1 − ε as k
tends to ∞. We have then on one hand

f (X) ∩
(

tαk α
k + intRn+

)
= ∅ for all k ≥ 1,

which implies

f (X) ∩ ((1 − ε/2)α + R
n+) = ∅. (7)

On the other hand, by the construction of Wk , every element α ∈ Wk verifies the inequal-
ity α � (δ, . . . , δ). Therefore, α � (δ, . . . , δ), and in particular, α ∈ [ f (X)]♦∩ intRn+.
This and (7) contradict the conclusion of Theorem 2.3(v).

(c) Explicit form of the key program in the algorithm. The problem, noted (Pα), that one has
to repeatedly solve in Step 3 is the following:

max
x∈X

hα( f (x)),

where α is a strictly positive vector. It can be written in an explicit form as follows

max
x∈X

min

{
fi (x)

αi
: i = 1, . . . , n

}
.

If it happens that fi are concave functions and X is a convex set, then we deal with a
concave maximization problem and convex optimization techniques can be applied to
solve it.

(d) Bi-criteria problems. For n = 2, the procedure to compute Wk+1 is very simple. To obtain
it suffices to compute the sets V (α |tαα ) for α ∈ Wk because the inequality tαα < β is
impossible when β 	= α so that V (β |tαα ) = {β} for β ∈ Wk \ {α}.

5 Numerical examples

To perform a few preliminary computational examples we have used Matlab Optimization
Toolbox. By our experience, the results we obtained by the help of the Optimization Toolbox
are not fully satisfactory when the number of variables m is large and when the objective
functions are of bad behavior, which is a common feature of nonconvex optimization. In order
to improve the accuracy, at each optimization process several initial points were generated
and only the best solutions were kept. At the third step, we compared the value f (xα) of
the current solution xα with all values of E previously computed, and so we could avoid
error accumulation. Another problem is that the computing time increases rapidly with the
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number of objective functions: at the kth iteration, one may have to solve up to nk−1 minimax
problems. Here nk−1 is the maximum number of the vertices of the set Wk \ ∪k−1

i=0 Wi . To
decrease the computing time and better control the distribution of approximation points of
the efficient set, we use also Vk(ε) = Wk \ {α ∈ ∪k

i=1Wk :tα ≥ 1 − ε} instead of Vk when
computing the set Wk+1 by procedure (W) (Step 3(c)). Namely, those α ∈ Wk with tα ≥ 1−ε

will be dropped from the set of vertices that generates the new Wk+1.

5.1 Biobjective problems

5.1.1 Example 1

Consider the following biobjective problem:

max
(
3 − √

x1, 3 − √
x2

)
.

s.t. (x1, x2) ∈ [0, 8.99]2 , x1 + x2 ≥ 5.

In this example the biobjective function is not concave and the constraints are linear. With
ε = 0.02, the algorithm stops after seven iterations. The subsets of E obtained during the
process are illustrated in Fig. 3.

5.1.2 Example 2

Consider the following biobjective problem:

max (x1, x2)

s.t. (x1, x2) ∈ [0.01, 1]2 , (x2 − 0.5x1)(4x1 − x2) ≤ 0.

This problem is of particular structure because [ f (X)]♦ is a finitely generated free dis-
posal set. Therefore, the stopping criterion of Step 3 is verified after a finite number of
iterations and we can set ε = 0. Indeed, for k = 1, we have α = (1, 1), A1 = [0, 1]2.
By solving problem (Pα), we obtain tα = 0.5, V1 = {α}, A2 = A1 \ [0.5, 1]2 and W2 =
{β1, β2} = {(0.5, 1), (1, 0.5)}. At the next step, we have tβ1 = 0.5, tβ2 = 1, V2 = {β1}, A3 =
A1 \ [0.25, 1] × [0.5, 1] and W3 = {γ1, γ2, γ3} = {(0.25, 1), (0.5, 0.5), (1, 0.5)}. Finally,
we get tγ1 = tγ2 = 1, which means V3 = ∅ and A3 = A♦. Note that γ3 = β2 which means
that tγ3 has already been computed at the previous step. Thus, the algorithm terminates after
three iterations (see Fig. 4a).

5.1.3 Example 3

Consider the following problem:

max (x1, x2)

s.t. (x1, x2) ∈ [0.01,+∞[2 , x2
1 + x2

2 − 25 ≤ 0, 1 − (x1 − 4)2 − (x2 − 2)2 ≤ 0.

This problem is of bad structure because the constraint set is not convex and the solution set
is not connected. With ε = 0.05 after ten iterations, we obtain the subset of E illustrated in
Fig. 4b. Notice that min {tα :α ∈ W10} ≈ 1 − ε = 0.95, while the average of these tα is about
0.9986. This means that a large majority of α at the last iteration provides elements of the
solution set which are very closed to those computed before.
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Fig. 3 f (X) is presented by the
solid line; x-marks describe the
elements of the subset of E
computed by the algorithm after
(a) 1 iteration, (b) 3 iterations,
(c) 7 iterations
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Fig. 4 (a) Example 2. f (X) is
presented by the solid line;
o-marks describe the elements of
the subset of E computed by the
algorithm. (b) Example 3, 10
iterations. x-marks describe the
elements of the subset of E
computed by the algorithm. (c)
Example 3, 250 iterations with
the use of Vk (ε) in computing
Wk+1
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Fig. 5 Example 5. The mesh grid is the unit sphere in R
3+ and the x-marks are elements of the subset of E

computed by the algorithm after 43 iterations

By using Vk(ε) to compute Wk+1 as explained in the beginning of Sect. 5, with ε = 0.002,
the algorithm stops after 250 iterations and we obtain the subset of E illustrated in Fig. 4c.
The efficiency of this use of Vk(ε) in computing Wk+1 is shown by the fact that more com-
puting time has been necessary to generate Fig. 4b than Fig. 4c where the approximation of
the efficient set is better.

5.2 Three-objective problems

5.2.1 Example 4

Consider the following problem:

max (x1, x2, x3)

s.t. (x1, x2, x3) ∈ [0.01, 1]3 , (x2 − 0.5x1)(4x1 − x2) ≤ 0.

This problem with three objective functions is very similar to the one of Example 2. It is worth-
while noticing that the stopping criterion (with ε > 0) would never hold if the constraint
(x1, x2, x3) ∈ [0, 1]3 were imposed instead of (x1, x2, x3) ∈ [0.01, 1]3. With ε = 0.01,
the algorithm terminates after nine iterations. Notice that the solutions we obtained in this
example are weakly efficient only.

5.2.2 Example 5

Consider the following problem:

max (x1, x2, x3)

s.t. (x1, x2, x3) ∈ [0.01,+∞[3, x2
1 + x2

2 + x2
3 − 1 ≤ 0, x2

3 − x2
1 − x2

2 ≤ 0.

By using Vk(ε) to compute Wk+1, with ε = 0.03, the algorithm terminates after 43 iterations
and we obtain the subset of E illustrated in Fig. 5.
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6 Conclusion

The method presented in this paper is aimed at solving nonconvex multiobjective problems.
It is based on a particular outer approximation of the outcome set f (X) by free disposal
polyhedra. The convergence result (Theorem 4.1) presents the main advantage of our ap-
proach over the existing methods we are aware of. The preliminary work on computational
experiments proves the practicability of the method for small size problems. As we have
noticed, the Optimization Toolbox, which is at our disposal, is much less efficient for non-
convex models with a big number of variables. We believe that global optimization solvers
which are able to solve more efficiently scalar nonconvex models with a bigger number of
variables, could allow us to treat multiobjective problems of larger size. This of course needs
further investigation.
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